

Waveguide superconducting single-photon detectors for Integrated Quantum Photonic devices

KOBIT- 1 Izmir Yuksek Teknoloji Enstitusu

Döndü Sahin QET Labs, d.sahin@bristol.ac.uk

Where innovation starts

Technische Universiteit **Eindhoven** University of Technolog

Bristol QET Labs, > 100 people

University of BRISTOL Quantum photonic Moore's Law

Appl. Phys. Lett. 106, 111116

KOBIT 1 - February 3, 2017 / D. SAHIN

.....

Why SNSPDs ?

- Efficiency (as high as possible, maximum 100 %)
- Dead time (detector cannot register any photon)
- Dark count (false counts)
- o Jitter (uncertainty in detection)
- Spectral response (visible up to 5 μm)

KOBIT 1 - February 3, 2017 / D. SAHIN

 \odot

 \odot

 $(\mathbf{\cdot})$

Design of waveguide singlephoton detector (WSPD)

Finite-element simulation

JP Sprengers et al. Appl. Phys. Lett. 99, 181110 (2011) Book: Optical waveguide Theory by A.W. Snyder & J. Love or any other books

JP Sprengers et al. Appl. Phys. Lett. 99, 181110 (2011)

Measurement set-up & efficiency BRISTOL calculations

System quantum efficiency (SQE) = Numb of counts/ Numb of photons coupled (Device) Quantum efficiency (QE) = SQE / η_c

8

The first demonstration of waveguide SNSPDs on III-V that is compatible with single-photon sources and passive circuit.

Sprengers et al. Appl. Phys. Lett. 99, 181110 (2011)

Hanbury-Brown and Twiss BRISTOL interferometer: $g^{(2)}(\tau)$ measurements

Waveguide HBT

Waveguide single photon BRISTOL autocorrelators

Waveguide autocorrelator

Waveguide single photon BRISTOL autocorrelators

D. Sahin et al. OpEx 21, 11162 (2013)

BRISTOL Efficiency and polarization response

Very high absorptance (>90% for both TE&TM) of 50 μm long waveguide

D. Sahin et al. OpEx 21, 11162 (2013)

KOBIT 1 - February 3, 2017 / D. SAHIN

D. Sahin et al. Opt. Express 21, 11162 (2013) PAGE 18

BRISTOL Inhomegeneity of NbN SNSPDs

R Gaudio et al., APL 105, 222602 (2014)

KOBIT 1 - February 3, 2017 / D. SAHIN

PAGE 18

Addresses inhomogeneity of NbN nanowires, especially on GaAs

D Sahin et al., JSTQE 21 (2015)

Cavity enhanced efficiency as well as yield enhancement

WG: 220 nm thick, 500 nm wide on 1µm SiO₂ NW: NbN, 4.5 nm thick, 100 nm wide

N. A. Tyler et al. OPEX, 24 , p: 8797 (2016)

University of BRISTOL SNSPDs in cavity - efficiency

N. A. Tyler et al. OPEX, 24 , p: 8797 (2016)

University of BRISTOL SNSPDs in cavity - performance

N. A. Tyler et al. OPEX, 24 , p: 8797 (2016)

Recent advancements: BRISTOL SNSPD with WSi nanowires on Si

No WG but a mirror cavity structure is implemented

F. Marsili et al. Nature Photon 7.3 (2013): 210-214

KOBIT 1 - February 3, 2017 / D. SAHIN

PAGE 27

Waveguide photon-number-resolving detectors (WPNR)

D. Sahin et al. Appl. Phys. Lett. 103, 111116 (2013)

Ben Slater

Andreas Gentile

Mack Johnson

Gerardo Villarreal

Nicola Tyler

.....

Jorge Barreto

Mark Thompson Je

S. Jahanmirinejad, Z. Zhou & A. Fiore

Eindhoven University of Technology

A. Gaggero, F. Mattioli & R. Leoni

IFN-CNR- Rome

J. Beetz, M. Lermer, M. Kamp & S. Höfling

University of Würzburg

http://www.bristol.ac.uk/physics/research/ quantum/engagement/qcloud/

THANKS VERY MUCH

Döndü Sahin QET Labs, d.sahin@bristol.ac.uk

Engineering and Physical Sciences. Research Council

*s*tw

