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Introduction

Introduction

@ Feynman: exponential classical resources for the simulation of
quantum systems.

@ Deutsch: 1 quantum query vs. 2 classical queries for a very special
problem

e Grover: O(4/n) quantum queries vs. O(n) classicals queries

Simon: Exponential speedup as compared to nondeterministic classical
algorithms

Shor: Applicable to cryptography

What's next?

Can we automatize the process?
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Architecture

Preliminaries

Bit strings and functions

Bit string: X : X = X,X,_1Xn_2...x1, where x; € {0,1}, 1 <i<n.
Hamming weight: |x| =Y x;.

Function f: S — T, where SC X", ¥ and T are finite sets.

f is partial when S C X", total when S =1X", Boolean when

Y ={0,1}.

e f is a decision function if T ={0,1}.

Assume all functions are Boolean.
Example

Deutsch - Jozsa algorithm: T ={0,1}, S C {0,1}" is the set of
constant and balanced bit strings.

(x) = {1 if |x|=3, (balanced case)

0 if |[x|=0or 1 (constant case).
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Architecture

Preliminaries

Hilbert spaces, operators and matrices

K a finite set, 77k Hilbert Space associated with K. Ortohonormal
basis {|k)}.

A an operator on it A: H — .

A= A": Hermitian

(y|Ay) >0 Y|y) € A Positive semidefinite

(Ay|Ag) = (y[9) V|y),|¢) € " Unitary

A? = A: Projection

P, : Y P; =1: Complete set of orthogonal projectors

® 6 6 6 o o o

M = {m,, : my, = (yi|y,)}, Gram matrices. (Here{|y;)} are an
indexed family of vectors in 7. M > 0)
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Architecture

Registers

e input register: holds the input bit string x € {0,1}"
@ query register: holds an integer i such that 0 </ < n.

@ ancilla: acts as a working memory, no priory conditions.

State of the memory: |B) =Y Bxiw X, i,w)
It can be written as: |V) =Y, cs|x)|Wx) where [y,) =Y, |i) |wi.i)
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Operators

@ Oracle
Olx)|i,w) = (=1)"|x)[i,w) (1)

i =0, null query: No phase is introduced regardless of the input.
Alternatively

Ox |i,w) = (=1)" [i,w) (2)
Note the difference between (2) and the conventional

definition Of |x,w) = (—1)f( )\x, w).

@ Intermediate unitaries {UU)}
@ Orthogonal projection operators {P,}, ¥, P, =1
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Architecture

Quantum algorithm and query complexity

Input bit string is x = x,xp_1...x1, corresponding oracle: Oy, t queries

Algorithm:

1. Initialize the registers to |0,0)

2. Apply the first unitary U(©

3. Alternatively apply O, and UU)’s t times

4. Apply the projection operators {P,} (make a measurement) and
output the result with an error €.

Final state: |Wfina) = U O, U O, - UM 0, U |0,0)
Query complexity is t !
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SDP - QQC Correspondence Convex Optimization

Optimization

Definition
Optimization is the mathematical process of selecting the best element
with regard to some criteria from the set of available alternatives[1].

It has the form:

minimize fo(x)

subject to filx)<b;, i=1,. (3)

., m.

x = (x1,...,xp): optimization variable,
fo : R" — R: objective function,

f;: R" — R: constraint functions,

b;: bounds.
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SDP - QQC Correspondence Convex Optimization

Optimization

AN
AR

a0

Figure: A surface with a few local optima: MATLAB peaks() function.
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SDP - QQC Correspondence Convex Optimization

Linear and convex optimization

Definition

Optimization problem is called a linear program if the objective and
constraint functions fy, ... f,, are linear,

filax+Py) = afi(x)+Bfi(y).

Definition

More generally, an optimization problem is called convex if the objective
and constraint functions fy,...f, are convex,

filax+By) < afi(x)+Bfi(y). (4)

In convex optimization, optimal point is unique!
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SDP - QQC Correspondence Convex Optimization

Semidefinite programming

A semidefinite program has the form:

minimize ExX
subject to o xX=b (5)
) X =0

E, X: symmetric matrices,
& : R™" — R": linear operator,
b: vector,

Px @ : pairwise product of P and @ matrices.
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SDP - QQC Correspondence Convex Optimization

Disciplined convex programming and CVX

Definition

Disciplined convex programming is a methodology for constructing convex
optimization problems proposed by Michael Grant, Stephen Boyd, and
Yinyu Ye[2].

DCP ruleset: a set of conventions or rules for converting a convex
optimization problem to a numerically solvable form.
A convex problem can be rejected if it violates the ruleset!

Definition
CVX'is a modeling system for constructing and solving disciplined convex
programs on MATLAB.

[SOVELTROET T (P r W (ol R A S M Quantum Algorithms by Convex Optimiz: February 3rd 2017 16 / 32



G Ol
A simple CVX example

Example
Least-squares problem with bounds

minimize |Ax — bl|,
subject to i < x; < y;

CVX code:

cvx_begin
variable x(n)
minimize( norm(A*x-b) )
subject to
1 <=x<=u

cvx_end

[SOVELROVET T (P r W (ol R S B Quantum Algorithms by Convex Optimiz: February 3rd 2017 17 / 32



SDP - QQC Correspondence Representations

Quantum query complexity and error

Let f:S— T and €€ [0 1)
Algorithm computes f within error € = Probability of output f(x) is at
least 1 —¢

T (f(x))>1—¢

€ =0 : zero error case
Complexity of QA: number t of queries.

System: QA(f,t,€), partial Boolean function f, an integer t, a real
number € € [0,%)
Question:

Is there a t-step QA(f,t,€) that computes f within error € 7
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SDP - QQC Correspondence Representations

A semidefinite program to represent QA

Semidefinite program: SDP(f,t,€), Find S x S real symmetric positive
definite matrices M(1), M,-(J) and ', : z € T satisfying [3]

Y M? = & (6)
YMD = Y E«MITD for1<j<t (7)
= i=0
Yr, = ZE,-*M,.“‘” (8)
zeT i=0
AT, = (1—¢) (9)

where E;[x,y] = (—1)", A, =diag (8¢(x)..), F[x,¥] =1— 8¢ (x)r(y)
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SDP - QQC Correspondence Theorem

Correspondence theorem

Theorem

(Barnum, Saks and Szegedy [3]) Let f : S — T be a partial boolean
function with domain S C{0,1}". Let t be a natural number and € > 0.

There is a t-step QA that computes f within error € if and only if
SDP(f,t,€) is feasible.

QA(f,t,e) < SDP(f,t,¢) (10)
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SDP - QQC Correspondence Numerical Results

A recipe for quantum algorithms (Montanaro et al.[4])

© Construct a SDP for the problem.
@ Write a CVX code to solve the SDP and run it.
© Using the matrices M), M,-(J) and ', , derive a sequence of

intermediate states‘%(gj)> of the quantum computer.

Q Using Lemma 5 of [4] to generate all the intermediate unitary
operators UU) and the final projection operators P, .
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SDP - QQC Correspondence Numerical Results

A numerical result

1 if =2
Function:EXACTA(x) = * Ixl =
0 otherwise

Design a 2-query quantum algorithm that evaluates EXACT% with zero
error, (i.e. t=2,6=0).

No ancilla, no output register. Only 5 dimensional input register.
(Montanaro et al. [4])
Initial state: |y) =3Y% i),

Apply OxUOx,
0 1 1 1 1
|10 1 e g
U=-]1 1 0 0® o (11)
211 o @ 0o 1
1 o o 1 0

and @ = e?™/3_ Can we generalize it to EXACT? »? Partially...
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Improvements, Applications and Results
Outline

@ Improvements, Applications and Results
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Improvements, Applications and Results Our contribution

Error minimization: a CVX code for the problem

Task: minimize error £(epss) for the function f, (2bits) with t =1 query.
CVX code:

cvx_begin
variable m*0’s and g*’s symmetric, variable epss
minimize( epss );
subject to
m00 + ml0 + m20 == EO
g0 + g1 == EO .* mO0 + E1 .* ml0 + E2 .* m20;
diag(g0) >= (1l-epss)*(1-f);
diag(gl) >= (l-epss)*f;
m*0 == semidefinite(2°n); g* == semidefinite(2°n);
cvx_end
(*: 0,1,2 for m’s and 0,1 for g's )
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Improvements, Applications and Results Our contribution

Generalizations

@ Total vs partial functions
f:{0,1}" — T becomes f: S— T, SC{0,1}"
Ei[x,y] = (=1)%% becomes E; [x(k),y(k)] = (—1)*Witx(Ki pee g
is an index set for S

@ Boolean vs non-Boolean functions
f:5$—{0,1} becomesf: S— T
f vs (1—f) becomes distinguishing all f;, i € T from each other.
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Extensions and applications to known algorithms
EXACTS, EXACTS and EXACTS,

e EXACT3: Trace minimization and angle manipulation leads to
Montanaro’'s “inspired” result.

max (rank (/\/Ii(j)>> =2 real dimensions —> 1 complex dimensions.

o EXACT§ and EXACTS,
max (rank (Mi(j)>> =6 real dimensions — [log, 6] = 3 qubit ancilla
instead of 6.
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Improvements, Applications and Results Extensions and applications to known algorithms

Deutsch - Jozsa algorithm

Task:
Evaluate
1 if [x|=3,

f =
) 0 if |x|=0 or 1.

using only t =1 calls.

Code finds an algorithm with t =1 for n=2, n=4 and n=6.
n =8 and beyond becomes too complex.
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Improvements, Applications and Results Extensions and applications to known algorithms

Grover's algorithm

Task:

Distinguish all fj(x), 1 <i < m from each other. x is a bit string with only
one 1 and the rest is 0.
Complexity of Grover's original algorithm: 7./m.

| m [ Grover [7/m] | CVX |

2-4 2 2
5-6 3 2
7-8 3 3
9-13 4 3
14-25 4 4

Table: Comparison of query complexities for the Grover’'s problem

[SOELROVET T (P r W (ol R S B Quantum Algorithms by Convex Optimiz: February 3rd 2017 28 / 32



Extensions and applications to known algorithms
Weight decision - | [6, 7, 8]

Task:
Let p; and p2, 0 < p; < p2 <1 be two weights. Evaluate

F(x) = 1 !f |x| = np1,
0 if |x|=nps.

We found (some, not all) algorithms that distinguish weights for n <10

[SOELROVET T (P r W (ol R S B Quantum Algorithms by Convex Optimiz: February 3rd 2017 20 / 32



Improvements, Applications and Results

Extensions and applications to known algorithms

Weight decision - Il

©:1query | x:2 queries | o: 3 queries |

A

1 T T

Figure: Comparison of the results by (Choi, Braunstein 2011), (Uyanik, Turgut
2013) and this work.
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Pros and Cons

Pros
@ QQC - SDP correspondence is easy to implement via CVX.
@ Quick and exhaustive search.

e Many applications: Deutsch - Jozsa, Grover and Weight decision
algorithms

Cons

@ Only for a small number of qubits. Complexity of the convex
optimization problem increases rapidly

o Mostly useful for existence proofs or inspiration

@ It would have been very nice if we had a rank constraint
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What to do next?

@ Other applications, special problems

@ Rank constraint, can we implement it with some other method?
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