Classical Method of Images and Quantum Entangled Coherent States

Oktay Pashaev Department of Mathematics Izmir Institute of Technology

> KOBIT-1 2016, Izmir Turkey

Entangled with Images

Boundary Conditions as origin of images and entanglement of images

Through The Looking Glass

Alice anti-unitary transformation (Wigner)

$$K: |\Psi\rangle \to |\bar{\Psi}\rangle$$

Non Schrödinger Cat Image

not dead and not alive

$$Ke^{i\pi}: |\Psi\rangle \to |-\bar{\Psi}\rangle$$

Electrostatics Images

Boundary Conditions: Potential U(x, y, z = 0) = 0

Vortex Images

Point vortex: Boundary Conditions: $Im f|_C = 0$

$$f(z) = \Gamma \ln(z - z_0) \rightarrow \bar{V} = \frac{\Gamma}{z - z_0}$$

Classical Method of ImagesandQuantum Entangled Coherent States - p. 6/74

Hydrodynamic flow

Bounded domain

For given C-boundary curve find analytic function (complex potential) F(z) with boundary condition

$$\Im F|_{\mathcal{C}} = \psi|_{\mathcal{C}} = 0$$

 ψ is the stream function Normal velocity: $v_n|_{C} = 0$

Milne-Thomson circle theorem

complex potential

$$F(z) = f(z) + \bar{f}\left(\frac{r^2}{z}\right)$$

Circle theorem for point vortex

For vortex $+\kappa$ ($\Gamma = -2\pi\kappa$) at z_0

$$ar{V}(z) = rac{i\kappa}{z-z_0} - rac{i\kappa}{z-rac{r_1^2}{ar{z}_0}} + rac{i\kappa}{z}$$

second term - vortex $-\kappa$ at inverse point r_1^2/\bar{z}_0 to circle last term - vortex $+\kappa$ at origin - vortex images

Vortex Image in the Circle

Concentric Circles

Concentric circles: z = 0 and $z = \infty$ - common symmetric points

Apollonius Circles

Conformal mapping of concentric circles

$$w = \frac{az+b}{cz+d}$$

A, B - common symmetric points

Two circles theorem

Pashaev 2012: annular domain: $r_1 < |z| < r_2$ between two concentric circles $C_1 : |z| = r_1$, $C_2 : |z| = r_2$

$$F_{\boldsymbol{q}}(z) = f_{\boldsymbol{q}}(z) + \bar{f}_{\boldsymbol{q}}\left(\frac{r^2}{z}\right)$$

where $q = \frac{r_2^2}{r_1^2}$, $f_q(z) = \sum_{n=-\infty}^{\infty} f(q^n z)$ - flow in even annulus $\bar{f}_q\left(\frac{r^2}{z}\right) = \sum_{n=-\infty}^{\infty} \bar{f}\left(q^n \frac{r^2}{z}\right)$ - flow in odd annulus Proof: $Im F(z)|_{C_1} = 0$ and $Im F(z)|_{C_2} = 0$

Vortex in annular domain

for vortex at z_0 by Two Circle Theorem

$$F(z) = \frac{\Gamma}{2\pi i} \sum_{n=-\infty}^{\infty} \ln \frac{z - z_0 q^n}{z - \frac{r_1^2}{\overline{z}_0} q^n},$$

$$\bar{V}(z) = \frac{\Gamma}{2\pi i} \sum_{n=-\infty}^{\infty} \left[\frac{1}{z - z_0 q^n} - \frac{1}{z - \frac{r_1^2}{\bar{z}_0} q^n} \right]$$

Vortex images and q-lattice

Scanned by CamScanner

N-vortex Dynamics

N - point vortices with circulations $\Gamma_1,...,\Gamma_N$, at $z_1,...,z_N$:

q-Exponential form

Hamiltonian

N Vortex Polygon Solution

$$q = \frac{r_2^2}{r_1^2} > 1$$

Classical Method of ImagesandOuantum Entangled Coherent States – p. 18/74

N-Polygon Solution

N vortices $\Gamma_k = \Gamma, k = 1, ..., N$, located at the same distance $r_1 < r < r_2$

$$z_k(t) = r e^{i\omega t + i\frac{2\pi}{N}k}$$

rotation frequency

$$\frac{2\pi r^2(q-1)}{\Gamma}\omega = \frac{N-1}{2}(q-1) + \frac{N-1}{2}(q-1) +$$

 $\sum_{j=1}^{N} \left[Ln_q \left(1 - \frac{r_2^2}{r^2} e^{i\frac{2\pi}{N}j} \right) - Ln_q \left(1 - \frac{r^2}{r_1^2} e^{-i\frac{2\pi}{N}j} \right) \right]$

Wedge theorem

For given flow f(z), introduction of boundary wedge with angle $\alpha = 2\pi/N = \pi/n$, N = 2n - positive even number, produces flow

$$F_q(z) = f(z) + f(q^2 z) + f(q^4 z) + \dots + f(q^{2(n-1)}z)$$
$$+ \bar{f}(z) + \bar{f}(q^2 z) + \bar{f}(q^4 z) + \dots + \bar{f}(q^{2(n-1)}z)$$
or shortly

$$F_q(z) = \sum_{k=0}^{n-1} f(q^{2k}z) + \sum_{k=0}^{n-1} \bar{f}(q^{2k}z)$$

 $q = e^{i\frac{2\pi}{N}} = e^{i\frac{\pi}{n}}$ primitive root of unity $q^N = 1$ Pashaev (2014)

Classical Method of Images and Quantum Entangled Coherent States - p. 20/74

Kaleidoskop

Kaleidoskop

Vortex kaleidoscope

for

$$f(z) = \frac{i\Gamma}{2\pi} \ln(z - z_0)$$

we have

$$F_q(z) = \frac{i\Gamma}{2\pi} \sum_{k=0}^{n-1} \ln \frac{z - z_0 q^{2k}}{z - \bar{z}_0 q^{2k}} = \frac{i\Gamma}{2\pi} \ln \prod_{k=0}^{n-1} \frac{z - z_0 q^{2k}}{z - \bar{z}_0 q^{2k}}$$

kaleidoscope of 2n vortices: positive strength at $z_0, z_0q^2, z_0q^4, ..., z_0q^{2(n-1)}$, negative strength at $\overline{z}_0, \overline{z}_0q^2, \overline{z}_0q^4, ..., \overline{z}_0q^{2(n-1)}$.

Vortex kaleidoscope

due to identity (E. Kummer):

$$(z-z_0)(z-z_0q^2)(z-z_0q^4)\dots(z-z_0q^{2(n-1)}) = z^n - z_0^n$$

valid for $q^2 = e^{i\frac{2\pi}{n}}$ as the primitive *n*-th root of unity, compact expression for the vortex flow in the wedge (the Kummer kaleidoscope of vortices)

$$F_q(z) = \frac{i\Gamma}{2\pi} \ln \frac{z^n - z_0^n}{z^n - \bar{z}_0^n}$$

Vortex in Wedge

 $q = e^{i\frac{\pi}{4}}$

$$F_q(z) = \frac{i\Gamma}{2\pi} \ln \frac{z^4 - z_0^4}{z^4 - \bar{z}_0^4}$$

Circular wedge theorem

angle $\alpha = 2\pi/N = \pi/n$, bounded by lines Γ_1 : z = xand Γ_2 : $z = xe^{i\frac{\pi}{n}}$ and circular boundary C_1 : $z = re^{it}$, $0 < t < \alpha$. Then the flow is

Circular vortex kaleidoscope

single vortex in circular wedge

$$F_q(z) = \frac{i\Gamma}{2\pi} \ln \frac{(z^n - z_0^n)(z^n - \frac{r^{2n}}{z_0^n})}{(z^n - \bar{z}_0^n)(z^n - \frac{r^{2n}}{\bar{z}_0^n})}$$

- doubling of images by reflection in circle r.

Vortex in Circular Wedge

Classical Method of ImagesandQuantum Entangled Coherent States – p. 28/74

Double Circular Wedge

Quantum Vortex in Annular Domain

Point vortex problem in annular domain as a nonlinear oscillator or as f-oscillator

$$z_{0} = -i\omega z_{0}$$

$$E_{n} = \frac{\Gamma^{2}}{4\pi} \ln \left| e_{q} \left(\frac{(n)}{(1-q)r_{1}^{2}} \right) e_{q} \left(\frac{r_{2}^{2}}{(1-q)(n)} \right) \right|$$

$$+ \frac{\Gamma^{2}}{4\pi} \ln \left| e_{q} \left(\frac{(n+1)}{(1-q)r_{1}^{2}} \right) e_{q} \left(\frac{r_{2}^{2}}{(1-q)(n+1)} \right) \right|$$

Images and Quantum States

Method of images \rightarrow construct set of multiple qubit coherent states.

Qubit \leftrightarrow arbitrary point in extended complex plane

Reflected (inverted) qubit \leftrightarrow reflected (inverted) image point

Coherent States

Coherent States and Complex Plane Coherent States - introduced by Schrodinger (harmonic oscillator), in quantum optics - Glauber (minimization of Heisenberg uncertainty relations - closed to classical states) $\alpha \in C$ complex number

$$|\alpha\rangle = e^{-|\alpha|^2/2} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle$$

Cat states: $|\alpha\rangle \pm |-\alpha\rangle$ - reflection at origin Entangled coherent states :

$$|\Psi\rangle = |\alpha\rangle |\alpha\rangle \pm |-\alpha\rangle |-\alpha\rangle$$

Spin Coherent States

Spin Coherent States or SU(2) coherent states (quantum optics, etc)

Spin Coherent States (generalized CS) - widely used in quantum information theory \rightarrow studying the entanglement of spin coherent states as a measure of their classicality

Mobius transformation on qubit

Linear transformation

$$\left(\begin{array}{c}w_1\\w_2\end{array}\right) = \left(\begin{array}{cc}a&b\\c&d\end{array}\right) \left(\begin{array}{c}\psi_1\\\psi_2\end{array}\right)$$

for homogeneous coordinates $\psi = \psi_1/\psi_2$, $w = w_1/w_2$ implies Mobius Transformation

$$w = \frac{a\psi + b}{c\psi + d}, \quad ad - bc \neq 0$$

Qubit and coherent state

$$|\psi\rangle = \left(\begin{array}{c}\psi_1\\\psi_2\end{array}\right) \Rightarrow$$

$$1 \qquad (1)$$

 $|\psi\rangle = \frac{1}{\sqrt{1+|\psi|^2}} \left(\begin{array}{c} 1\\ \psi \end{array}\right)$

spin $\frac{1}{2}$ generalized coherent state. Stereographic projection of Bloch sphere to complex plane $\psi \in C$: $\psi = \tan \frac{\theta}{2} e^{i\varphi}$

$$|\theta, \varphi\rangle = \cos\frac{\theta}{2}|0\rangle + \sin\frac{\theta}{2}e^{i\varphi}|1\rangle$$

Symmetric points

 ψ and ψ^* - symmetrical with respect to circle C through ψ_1 , ψ_2 , ψ_3 iff

$$(\psi^*, \psi_1, \psi_2, \psi_3) = \overline{(\psi, \psi_1, \psi_2, \psi_3)}$$

-cross ratio of four points 1. ψ and $\psi^* = \overline{\psi}$ projections of M(x, y, z) and $M^*(x, -y, z)$ reflection in x-axis 2. ψ and $\psi^* = -\overline{\psi} \rightarrow M^*(-x, y, z)$ in y-axis 3. ψ and $\psi^* = \frac{1}{\overline{\psi}} \rightarrow M^*(x, y, -z)$ inverse point 4. ψ and $\psi^* = -\frac{1}{\overline{\psi}} \rightarrow M^*(-x, -y, -z)$ antipodal point
Symmetric qubits

For qubit
$$|\theta, \varphi >$$
 symmetric states
1. $|\theta, -\varphi > \rightarrow |\overline{\psi} > = \frac{|0>+\overline{\psi}|1>}{\sqrt{1+|\psi|^2}}$
2. $|\theta, \pi - \varphi > \rightarrow |-\overline{\psi} > = \frac{|0>-\overline{\psi}|1>}{\sqrt{1+|\psi|^2}}$
3. $|\pi - \theta, \varphi > \rightarrow |\frac{1}{\psi} > = \frac{\overline{\psi}|0>+|1>}{\sqrt{1+|\psi|^2}}$
4. $|\pi - \theta, \varphi + \pi > \rightarrow |-\frac{1}{\psi} > = \frac{-\overline{\psi}|0>+|1>}{\sqrt{1+|\psi|^2}}$

antipodal symmetric coherent states are orthogonal

$$< -\psi^* |\psi> = 0$$

Reflections in Circle and Lines

Symmetric States

Alice Entangled Images

 $|-\bar{A}\rangle \qquad |A\rangle$

 $|-A\rangle \qquad |\bar{A}\rangle$ Classical Method of ImagesandOuantum Entangled Coherent States – p. 40/74

Inversion and Antipodal Images

$|-1/A\rangle |-\bar{A}\rangle |A\rangle |1/\bar{A}\rangle$ $|-1/\bar{A}\rangle |-A\rangle |\bar{A}\rangle |1/A\rangle$

Classical Method of Images and Quantum Entangled Coherent States – p. 41/74

Anti-unitary Transformation

Wigner (1932) Schrödinger equation \rightarrow time reflection $t \rightarrow -t$ implies

$$K|\psi\rangle = |\bar{\psi}\rangle$$

complex conjugation of the wave function

$$K^{2}|\psi\rangle = |\psi\rangle \to K^{2} = I$$
$$K(a|\varphi\rangle + b|\psi\rangle) = \bar{a}K|\phi\rangle + \bar{b}K|\psi\rangle$$

nonlinear operator

Concurence

Wootters (2001) Two qubits concurence

$$|\psi\rangle = c_{00}|00\rangle + c_{01}|01\rangle + c_{10}|10\rangle + c_{11}|11\rangle$$
$$|c_{00}|^2 + |c_{01}|^2 + |c_{10}|^2 + |c_{11}|^2 = 1$$
K

$$|\bar{\psi}\rangle = \bar{c}_{00}|00\rangle + \bar{c}_{01}|01\rangle + \bar{c}_{10}|10\rangle + \bar{c}_{11}|11\rangle$$

$$|\psi\rangle = \sigma_y \otimes \sigma_y |\psi\rangle$$

spin-flip operation

 $\|$

$$C_{\psi} = |\langle \tilde{\psi} | \psi \rangle| = 2|c_{00}c_{11} - c_{01}c_{10}|$$

Spin Flip

spin flip operator

$$K|\mathbf{n}\rangle = |-\mathbf{n}\rangle$$

is not unitary, but anti-unitary Inversion of the Bloch sphere \rightarrow antipodal state Can not be realized by nature in exact form

$$|\tilde{\psi}\rangle = \sigma_y |\bar{\psi}\rangle \to C = |\langle \tilde{\psi} |\psi\rangle|$$

Two qubit coherent states

 $|\psi > |\psi >, |\psi > | -\psi^* >, |-\psi^* > |\psi >,$ $|-\psi^* > |-\psi^* > \rightarrow$ maximally entangled set of orthogonal two qubit coherent states \rightarrow Pashaev ,N. Gurkan 2012

$$|P_{\pm}\rangle = \frac{1}{\sqrt{2}}(|\psi\rangle |\psi\rangle \pm |-\psi^*\rangle |-\psi^*\rangle)$$

$$|G_{\pm}\rangle = \frac{1}{\sqrt{2}}(|\psi\rangle| - \psi^*\rangle \pm |-\psi^*\rangle |\psi\rangle)$$

1. reduced density matrix C = 1

- 2. concurrence by determinant form C = 1
- 3. average of spin operators $\langle S \rangle = 0 \rightarrow$ entangled states are maximally nonclassical states

Q symbol of Hamiltonian

$$\mathcal{H}(\psi,\psi) = \langle \psi | H | \psi \rangle$$

average energy in coherent state For XXZ model

 $H = -J(S_1^+ S_2^- + S_1^- S_2^+) + 2\Delta S_1^z S_2^z$ $< P_+ |H|P_+ > =$ $-\hbar^2 \frac{8Jy^2 + J_z [1 + 2x^2 - 6y^2 + (x^2 + y^2)^2]}{(1 + x^2 + y^2)^2}$

where $\psi = \psi_1 + i\psi_2 \equiv x + iy$

XXZ average energy surface in maximally entangled $|P_+>$ state

XYZ average energy surface in maximally entangled $|P_+>$ state

XYZ average energy surface in maximally entangled $|P_->$ state

XYZ average energy surface in $|G_+\rangle$ state, $J_+ = 1$, $J_=0$, $J_z = 0$

XYZ average energy surface in $|G_+>$ state, $J_+ = -1.5, J_- = -1.5, J_z = 1.5$

3 qubit case in XYZ model

$$|PG_{+}\rangle = \frac{|\psi\rangle|\psi\rangle|\psi\rangle+|-\psi^{*}\rangle|-\psi^{*}\rangle|-\psi^{*}\rangle}{\sqrt{2}}$$

in the limit $\psi \rightarrow 0$, $-\psi^* \rightarrow \infty$ reduced to maximally entangled GHZ state

$$|GHZ> = \frac{1}{\sqrt{2}}(|000> + |111>)$$

XYZ average energy surface in $|PG_+\rangle$ state, $J_+ = -1, J_- = -1, J_z = -1$

XYZ average energy surface in $|PG_+\rangle$ state, $J_+ = 1, J_- = 0, J_z = -0.5$

Out[11]=

Three qubit entangled state

$$|PG_-\rangle = |\psi\rangle |\psi\rangle |-\psi^*\rangle + |\psi\rangle |-\psi^*\rangle |\psi\rangle$$
$$+|-\psi^*\rangle |\psi\rangle |\psi\rangle$$
in the limit $\psi \rightarrow 0, -\psi^* \rightarrow \infty$ reduced to
$$|W\rangle = \frac{|001\rangle + |010\rangle + |100\rangle}{\sqrt{3}}$$

XYZ average energy surface in maximally entangled $|PG_-\rangle$ state

Fibonacci Coherent States

$$\begin{split} |\psi\rangle^{N} &= \bigotimes(|0\rangle + \psi|1\rangle)^{N} \\ &= |00...0\rangle + \psi(|10...0\rangle + ...|00...1\rangle) \\ &+ \psi^{2}(|11...0\rangle + ...|00...11\rangle) + ...\psi^{N}|11...1\rangle) \\ &\text{Entangled state} \rightarrow |\mathcal{F}_{N}(\psi)\rangle = \frac{|\psi\rangle^{N} - |-\psi^{*}\rangle^{N}}{\psi - (-\psi^{*})} = \\ &F_{1}(\alpha,\beta)(|10...0\rangle + ...|00...1\rangle) + \\ &F_{2}(\alpha,\beta)(|11...0\rangle + ...|0...11\rangle) + \\ &\dots F_{N}(\alpha,\beta)|11...1\rangle \end{split}$$

complex Fibonacci polynomials

N qubit Lucas Coherent States

Entangled state

$$\begin{aligned} |\mathcal{L}_{N}(\psi)\rangle &= |\psi\rangle^{N} + |-\psi^{*}\rangle^{N} = |00...0\rangle + \\ L_{1}(\alpha,\beta)(|10...0\rangle + ...|00...1\rangle) + \\ L_{2}(\alpha,\beta)(|11...0\rangle + ...|0...11\rangle) + \\ ...L_{N}(\alpha,\beta)|11...1\rangle \end{aligned}$$

complex Lucas polynomials

$$L_n = \varphi^n + (-\varphi)^{-n}$$

Lucas numbers

Complex Fibonacci polynomials

Conjugate points ψ and $-\frac{1}{w}$ are roots of equation

$$\xi^2 = (\psi - \frac{1}{\bar{\psi}})\xi + \frac{\psi}{\bar{\psi}}$$

 $\psi = |\psi|e^{i\varphi}$ and $\xi = \eta e^{i\varphi}$ leads to $\eta^2 = a\eta + 1$, $a = |\psi| - |\psi|^{-1}, \eta^n = \eta F_n(a) + F_{n-1}(a)$ Fibonacci polynomials $F_1(a) = 1, F_2(a) = a$

$$F_{n+1}(a) = aF_n(a) + F_{n-1}(a)$$

Binet Formula

Fibonacci polynomials as q-numbers

$$F_n(\eta) = \frac{\eta^n - (-\eta)^{-n}}{\eta - (-\eta)^{-1}} = [n]_{\eta, -\eta^{-1}}$$

inverse-symmetrical q-calculus For $a = 1 \rightarrow |\psi| = \varphi = \frac{1+\sqrt{5}}{2}$ - Golden Ratio Fibonacci numbers as q-numbers

$$F_n = \frac{\varphi^n - (-\varphi)^{-n}}{\varphi - (-\varphi)^{-1}} = [n]_F$$

Golden Calculus - Pashaev, S. Nalci, 2012

$$F_{n+1}(\alpha,\beta) = \alpha F_n(\alpha,\beta) + \beta F_{n-1}(\alpha,\beta)$$
$$\alpha = \psi - \bar{\psi}^{-1}, \beta = \psi/\bar{\psi}$$
$$L_n(\alpha,\beta) = \psi^n + (-\bar{\psi})^{-n}$$
$$F_n(\alpha,\beta) = F_n(a)e^{i\phi(n-1)}$$
$$L_n(\alpha,\beta) = L_n(a)e^{i\phi n}$$

 $\phi = \arg \psi$

Fibonacci spiral $\phi = 100\pi$: t=3

Two (N-) Qubit Plane

$$|z\rangle = \frac{|00\rangle + z|11\rangle}{\sqrt{1 + |z|^2}}$$

Concurrence \rightarrow transition to symmetric state

$$C_{z} = |\langle \frac{1}{\bar{z}} | z \rangle| = \frac{2|z|}{1+|z|^{2}}$$

 $z = 0 \rightarrow |00\rangle : C_0 = 0$ $z = \infty \rightarrow |11\rangle : C_{\infty} = 0$ $|z| = 1 \rightarrow$ maximally entangled state C = 1It is invariant under rotation : $z \rightarrow ze^{i\alpha}$ reflections : $z \rightarrow \pm \overline{z}$ inversion : $z \rightarrow 1/\overline{z}$ Tuğçe Parlakgörür, O.K. Pashaev (2017)

Equi-entangled Circles

 $C_r = \frac{2r}{1+r^2} = C_{1/r}$ equal under inversion maximal C = 1 on unit circle |z| = 1

Apollonius Qubit States

$$z = \frac{w - 1}{w + 1}$$
$$|w\rangle = \frac{(w + 1)|00\rangle + (w - 1)|11\rangle}{\sqrt{2(1 + |w|^2)}}$$
$$C_w = \frac{|1 - w^2|}{1 + |w|^2}$$

Concurrence \rightarrow transition to symmetric states

$$C_w = |\langle -\bar{w}|w\rangle|$$

Apollonius Qubit States

C = 1

$C_A = 0, C_B = 0$ Electrostatic Analogy
Apollonius States

Apollonius States Concurence

 $C = |\sin \alpha|$

T. Parlakgörür, Pashaev, 2017