

Çekirdek spinlerinde sıkıştırılmış ve Schrödinger kedisi durumları

Ceyhun Bulutay Fizik Bölümü, Bilkent Üniversitesi, Ankara 3 February 2017

kobit $|1\rangle$ – page 1

Teşekkürler:

- l Ataç İmamoğlu (ETH)
- Tomáš Opatrný (Olomouc)
- QuTiP: The Quantum Toolbox in Python
 - TÜBİTAK, Project No. 114F409

Squeezed and cat states for a quadrupolar nuclear spin

Squeezed and Schrödinger cat states with quadrupolar nuclear spins

Ceyhun Bulutay Fizik Bölümü, Bilkent Üniversitesi, Ankara 3 February 2017

kobit $|1\rangle$ – page 1

Acknowledgements:

- l Ataç İmamoğlu (ETH)
 - Tomáš Opatrný (Olomouc)
- QuTiP: The Quantum Toolbox in Python
 - TÜBİTAK, Project No. 114F409

Squeezed and cat states for a quadrupolar nuclear spin

Outline

≻Outline Basics on Nuclear Spins Spin Squeezing via Quadrupole Interaction Cat States: Generation & Stabilization

Timescales & Decoherence

Basics on Nuclear Spins

Spin Squeezing via Quadrupole Interaction

Cat States: Generation & Stabilization

Timescales & Decoherence

Discussion & Conclusions

>0	utline	

Basics on Nuclear Spins

≻Nuclear Spin **≻**Electrostatic Energy: Multipole Expansion ≻Nuclear Electric Quadrupole Moment ≻Energetic Drive for Quadrupolar Alignment ≻Origin of Degeneracy in Quadrupolar Spectra ≻Nuclear Spin Quadrupole Hamiltonian Spin Squeezing via

Quadrupole Interaction

Cat States: Generation & Stabilization

Timescales & Decoherence

Basics on Nuclear Spins

Squeezed and cat states for a quadrupolar nuclear spin

Nuclear Spin

Each nuclear state is characterized by a unique "spin" quantum number I, representing the <u>total</u> angular momentum (orbital+intrinsic) of all the nucleons, $\vec{I} = \sum_{i=1}^{A} \vec{\ell_i} + \vec{s_i}$

- I: integer/half-integer based on nucleon number A: even/odd
- Predicting even the ground state nuclear spin not an easy feat: low-energy QCD

kobit $|1\rangle$ – page 4

Nevertheless, from experiment we know much about them

Rules that apply to ground state nuclear spins:

N: # neutrons, Z: # protons, A = Z + N: # nucleons

If N and Z are both even, I = 0 (based on pairing), eg., ${}_{6}^{12}C_{6}$, ${}_{14}^{28}Si_{14}$ NB: I = 0 nuclei are NMR-silent

If N and Z are both odd, I is full integer eg., ${}^{14}_{7}N_{7} \Rightarrow I = 1$, ${}^{10}_{5}B_{5} \Rightarrow I = 3$

Squeezed and cat states for a quadrupolar nuclear spin

Electrostatic Energy: Multipole Expansion

The electrostatic energy of a charge distribution $\rho(\vec{r})$ (here, nuclear charge) placed in an external field (here, due to crystal potential, V)

Nuclear wavefunction has definite parity \implies odd moments vanish: no dipole/octopole, . . .

N. Ramsey, Nuclear Moments, Wiley, 1953, pg. 24.

Squeezed and cat states for a quadrupolar nuclear spin

Nuclear Electric Quadrupole Moment

Squeezed and cat states for a quadrupolar nuclear spin

Energetic Drive for Quadrupolar Alignment

Consider a prolate nucleus (Q > 0) placed at a point where $E_{tot} = 0$ but for two different field gradients:

Squeezed and cat states for a quadrupolar nuclear spin

Energetic Drive for Quadrupolar Alignment

Consider a prolate nucleus (Q > 0) placed at a point where $E_{tot} = 0$ but for two different field gradients:

Squeezed and cat states for a quadrupolar nuclear spin

Origin of Degeneracy in Quadrupolar Spectra

The electrostatic energy of a cylindrical charge distribution is invariant within a quadrupolar field when reversed, unlike the Zeeman effect

Nuclear Spin Quadrupole Hamiltonian

In crystallographic coordinates and in Voigt notation:

 V_i

EFG elastic strain tensor

$$_{j} \equiv \frac{\partial^{2} V}{\partial x_{i} \partial x_{j}} \rightarrow V_{\mu} = \sum_{\nu=1}^{0} S_{\mu\nu} \epsilon_{\nu}$$

$$\begin{array}{l} V_{zz} = S_{11} \left[\epsilon_{zz} - \frac{1}{2} \left(\epsilon_{xx} + \epsilon_{yy} \right) \right] = S_{11} \epsilon_B , \\ V_{xy} = V_{yx} = 2S_{44} \epsilon_{xy} \end{array} \right\} \& \text{ cyc. perm's.}$$

In EFG principal axes (XYZ), Quadrupole Hamiltonian:

$$\mathcal{H}_Q = \frac{e^2 q Q}{4I(2I-1)} \begin{bmatrix} 3\mathcal{I}_Z^2 - \mathcal{I}^2 + \eta \frac{\mathcal{I}_+^2 + \mathcal{I}_-^2}{2} \end{bmatrix}, \qquad \begin{array}{c} \mathsf{EFG} \mathsf{Axes} \\ \mathsf{Z}_{\bigstar} \end{bmatrix}$$

where $\begin{cases} eq \equiv V_{ZZ}, & \text{field gradient} \\ \eta \equiv \frac{V_{XX} - V_{YY}}{V_{ZZ}}, & \text{biaxiality} \end{cases}$

$$|V_{zz}| \ge |V_{yy}| \ge |V_{xx}|$$

Squeezed and cat states for a quadrupolar nuclear spin

Nuclear Spin Quadrupole Hamiltonian

In crystallographic coordinates and in Voigt notation:

 V_i

EFG elastic strain tensor

$$_{j} \equiv \frac{\partial^{2} V}{\partial x_{i} \partial x_{j}} \rightarrow V_{\mu} = \sum_{\nu=1}^{0} S_{\mu\nu} \epsilon_{\nu}$$

$$\begin{array}{l} V_{zz} = S_{11} \left[\epsilon_{zz} - \frac{1}{2} \left(\epsilon_{xx} + \epsilon_{yy} \right) \right] = S_{11} \epsilon_B \,, \\ V_{xy} = V_{yx} = 2S_{44} \epsilon_{xy} \end{array} \right\} \& \text{ cyc. perm's.}$$

In EFG principal axes (XYZ), Quadrupole Hamiltonian:

$$\mathcal{H}_{Q} = \frac{e^{2}qQ}{4I(2I-1)} \begin{bmatrix} 3\mathcal{I}_{Z}^{2} - \mathcal{I}^{2} + \eta \frac{\mathcal{I}_{+}^{2} + \mathcal{I}_{-}^{2}}{2} \end{bmatrix},$$

$$\text{EFG Axes/Bloch Sphere} \\ \begin{array}{c} \mathsf{Z} \\ \downarrow \uparrow \rangle_{z} \\ \mathsf{Where} \\ \begin{cases} eq \equiv V_{ZZ}, & \text{field gradient} \\ \eta \equiv \frac{V_{XX} - V_{YY}}{V_{ZZ}}, & \text{biaxiality} \\ |V_{zz}| \geq |V_{yy}| \geq |V_{xx}| \\ \end{cases}$$

$$|V_{zz}| \geq |V_{yy}| \geq |V_{xx}|$$

$$\text{Squeezed and cat states for a quadrupolar nuclear spin}$$

$$\text{Kobit } |1\rangle - \text{page 9}$$

≻Outline			
Basics on Nuclear Spins			
Spin Squeezing via Quadrupole			
Interaction			
≻Quadrupole			
Interaction vs			
Stares of	Snin	Saucozina via	Quadrupala
Squeezing	Spill	Squeezing via	Quaurupule
>Dependence on			
Initial State Position		Interactio	
≻Squeezing Rate		miciacii	
Cat States: Generation & Stabilization			
Timescales &			
Decoherence			
Squeezed and ca	at states for a quad	Irupolar nuclear spin	kobit $ 1\rangle$ – page 10

Quadrupole Interaction vs Squeezing Schemes

All native twisting options: One-Axis / Mixed-Axis / Two-Axis

Y. Aksu Korkmaz and CB, Phys. Rev. A 93, 013812 (2016)

Squeezed and cat states for a quadrupolar nuclear spin

One-axis Twisting

$I=9/2, |CSS\rangle = |X\rangle, \eta = \mathbf{0}$

Squeezing progression ...

Squeezed and cat states for a quadrupolar nuclear spin

One-axis Twisting

$I=9/2, |CSS\rangle = |X\rangle, \eta = \mathbf{0}$

Anti-squeezing progression

Squeezed and cat states for a quadrupolar nuclear spin

Two-axis Countertwisting

$I=9/2, |CSS\rangle = |X\rangle, \eta = 1.0$

Squeezing progression ...

Squeezed and cat states for a quadrupolar nuclear spin

Two-axis Countertwisting

$I=9/2, |CSS\rangle = |X\rangle, \eta = 1.0$

Anti-squeezing progression

Squeezed and cat states for a quadrupolar nuclear spin

Dependence on Initial State Position

Y. Aksu Korkmaz and CB, Phys. Rev. A 93, 013812 (2016)

Squeezed and cat states for a quadrupolar nuclear spin

Squeezing Rate

 $\mathcal{Q} = 2I\sqrt{\left[\eta\cos 2\varphi(1+\cos^2\vartheta)+3\sin^2\vartheta\right]^2+4\eta^2\cos^2\vartheta\sin^2 2\varphi}$

T. Opatrný, Phys. Rev. A 91, 053826 (2015)

>	Oı	utl	ir	ne
-	\sim	uu		

Basics on Nuclear Spins

Spin Squeezing via Quadrupole Interaction

Cat States: Generation & Stabilization

≻Cat States

≻Phase Portraits

≻Measures

≻Basic Operation

≻Optimal

Parameters

>Sensitivity to

Parameters

Timescales & Decoherence

Cat States: Generation & Stabilization

Squeezed and cat states for a quadrupolar nuclear spin

Cat States

Macroscopically-distinguishable superposition of coherent states: |lpha
angle

Applications: quantum metrology, fault-tolerant coding, . . .

- Even/Odd cat states: $\mathcal{N}[|\alpha\rangle + |-\alpha\rangle]$ and $\mathcal{N}[|\alpha\rangle |-\alpha\rangle]$,
- Yurke-Stoller state: $\mathcal{N}\left[\left|\alpha\right\rangle\pm i\left|-\alpha\right\rangle\right]$

Spin cat states over the Bloch sphere via Quadrupole Interaction

- Equator-bound spin cat state: $[|Y\rangle + e^{i\varphi} |-Y\rangle]$
- Polar-bound spin cat state: $[|Z\rangle + e^{i\varphi} |-Z\rangle]$
- The x-axis (the minor EFG) to serve as the key rotation direction

Squeezed and cat states for a quadrupolar nuclear spin

Cat States

Macroscopically-distinguishable superposition of coherent states: |lpha
angle

Applications: quantum metrology, fault-tolerant coding, . . .

- Even/Odd cat states: $\mathcal{N}[|\alpha\rangle + |-\alpha\rangle]$ and $\mathcal{N}[|\alpha\rangle |-\alpha\rangle]$,
- Yurke-Stoller state: $\mathcal{N}\left[|\alpha\rangle \pm i |-\alpha\rangle \right]$

Spin cat states over the Bloch sphere via Quadrupole Interaction

- Equator-bound spin cat state: $[|Y\rangle + e^{i\varphi} |-Y\rangle]$
- Polar-bound spin cat state: $[|Z\rangle + e^{i\varphi} |-Z\rangle]$
- The x-axis (the minor EFG) to serve as the key rotation direction
- But, how to break-away from quasi-periodic cycle, i.e., stabilization??

Squeezed and cat states for a quadrupolar nuclear spin

Phase Portraits

For a classical spin vector pointing toward the (θ, ϕ) direction,

$$H_{\eta}(\theta,\phi) = \frac{hf_QI}{6} \left[3\cos^2\theta + \eta\sin^2\theta\cos2\phi \right]$$

Hamilton EOM for the canonically conjugate variables $(\phi, P_{\phi} \equiv \cos \theta)$:

$$\dot{\phi} = \frac{hf_QI}{3}P_{\phi}\left(3 - \eta\cos 2\phi\right)$$
$$\dot{P}_{\phi} = \frac{hf_QI}{3}\eta\left(1 - P_{\phi}^2\right)\sin 2\phi$$

CB, arXiv:1610.07046 (2016)

Squeezed and cat states for a quadrupolar nuclear spin

Phase Portraits

For a classical spin vector pointing toward the (θ, ϕ) direction,

$$H_{\eta}(\theta,\phi) = \frac{hf_QI}{6} \left[3\cos^2\theta + \eta\sin^2\theta\cos2\phi \right]$$

Hamilton EOM for the canonically conjugate variables $(\phi, P_{\phi} \equiv \cos \theta)$:

$$\dot{\phi} = \frac{hf_QI}{3}P_{\phi}\left(3 - \eta\cos 2\phi\right)$$
$$\dot{P}_{\phi} = \frac{hf_QI}{3}\eta\left(1 - P_{\phi}^2\right)\sin 2\phi$$

Four Fixed Points: $\pm Y$ and $\pm Z$ axes

CB, arXiv:1610.07046 (2016)

Squeezed and cat states for a quadrupolar nuclear spin

Measures

How close is generated state, $|\psi
angle$ to a target state, $|\beta
angle$?

Fidelity: $|\langle eta |\psi
angle|$ (for pure states)

QFI:
$$\mathcal{F}(\psi, \hat{A}) = 4 \mathcal{V}_{\psi}(\hat{A})$$
, where, $\mathcal{V}_{\psi}(\hat{A}) = \langle \psi | \hat{A}^2 | \psi \rangle - \langle \psi | \hat{A} | \psi \rangle^2$ is the variance

Effective size for a spin I system (an absolute macroscopicity measure) $N_{\text{eff}}^{\text{F}}(\psi) = \max_{\hat{A} \in \mathcal{A}} \mathcal{F}(\psi, \hat{A})/(2I)$ (maximize over operators within the relevant set \mathcal{A})

Relative QFI: degree of *catness* of a superposed state $|\psi_S\rangle = (|\psi_a\rangle + |\psi_b\rangle)/\sqrt{2}$,

$$N_{\text{eff}}^{\text{rF}}(\psi_S) = \frac{N_{\text{eff}}^{\text{F}}(\psi_S)}{\left[N_{\text{eff}}^{\text{F}}(\psi_a) + N_{\text{eff}}^{\text{F}}(\psi_b)\right]/2}$$

For pure states, and choosing as the relevant interferometric measurement operators the spin along directions u (i.e., \hat{I}_u)

$$N_{\text{eff}}^{\text{rF}}(\psi_S) = \frac{2 \mathcal{V}_S(I_S)}{\left[\mathcal{V}_a(\hat{I}_a) + \mathcal{V}_b(\hat{I}_b)\right]}$$

 $\mathcal{V}_{CSS}=I/2$, and $\mathcal{V}_{cat}=I^2$, Maximum $N_{ ext{eff}}^{ ext{rF}}
ightarrow 2I$

Normalized rQFI: Catness of an evolving state $\psi \ \overline{N}_{eff}^{rF}(\psi) = \frac{\mathcal{V}_{\psi}(\hat{I}_S)}{I^2}$, ranges between 0 to 1.

Squeezed and cat states for a quadrupolar nuclear spin

Basic Operation

Basic Operation

Basic Operation

Equator-bound

Optimal Parameters

Squeezed and cat states for a quadrupolar nuclear spin

Sensitivity to Parameters

Deviations from Optima: 5% (Dashed), 10% (Dotted)

Equator-Bound: I = 3/2, $\eta = 0.3$

kobit $|1\rangle$ – page 21

Sensitivity to Parameters

Deviations from Optima: 5% (Dashed), 10% (Dotted)

Polar-Bound: I = 3/2, $\eta = 0.3$

≻Outline	
Desise on Needer	
Basics on Nuclear	
Spins	
Spin Squeezing via	
Quadrupole	
Interaction	
Interaction	
Cat States:	
Generation &	
Stabilization	
Timoscolos ?	
Magnitudae	
Magnitudes	
>Decoherence:	
phase-flip channel	
≻Effect of	
Decoherence	
≻Mod 4 Spin Cat	
States	
➤Decoherence on	
mod 4 Cat States	
Scaling of Cat	
State Decoherence	
with I	
≻Discussion:	
Practical Context	
≻Conclusions	

Timescales & Decoherence

Order of Magnitudes

Fundamental time scale in QI, f_Q governed by strain

- Self-assembled quantum dots (SAQD), f_Q \sim 2–8 MHz
- Nitrogen vacancy (NV) defect centers, $f_Q \sim 10$ MHz
- Single-crystal KClO₃, $f_Q = 28.1$ MHz

In the absence of hyperfine coupling to the confined electronic spin: Primary decoherence process, phase damping

- SAQD: ^{69,71}Ga, ⁷⁵As, ¹¹⁵In nuclei, $T_2 = 1/\gamma \sim 1$ –5 ms
- NV: ¹⁴N nucleus, $T_2 \sim 1$ ms
 - KClO₃: ³⁵Cl nucleus, $T_2 = 4.6$ ms

Markedly distinct systems, $f_Q/\gamma = f_Q T_2 \sim 10^3 - 10^5$

 \Rightarrow Strong quadrupolar coupling regime

Squeezed and cat states for a quadrupolar nuclear spin

Decoherence: phase-flip channel

Cat states particularly vulnerable to phase noise

Lindblad Master equation

$$\frac{\mathrm{d}}{\mathrm{d}t}\hat{\rho}_{S}(t) = -\frac{i}{\hbar}\left[\hat{H},\hat{\rho}_{S}(t)\right] + \sum_{m=1}^{2I}\left[\hat{L}_{m}\hat{\rho}_{S}(t)\hat{L}_{m}^{\dagger} - \frac{1}{2}\left\{\hat{L}_{m}^{\dagger}\hat{L}_{m},\hat{\rho}_{S}(t)\right\}\right]$$

Lindblad operators:

$$\hat{L}_m = \sqrt{\binom{2I}{m} \left(\frac{1-e^{-\gamma}}{2}\right)^m \left(\frac{1+e^{-\gamma}}{2}\right)^{2I-m}} \hat{I}_z^m$$

where $\gamma = 1/T_2$ is the dephasing rate

S. Pirandola et al. Phys. Rev. A 77, 032309 (2008)

Squeezed and cat states for a quadrupolar nuclear spin

Effect of Decoherence

Mod 4 Spin Cat States

Macroscopically-distinguishable superposition of 4 spin cat states e.g. $[(|Z\rangle + |-Z\rangle) - (|Y\rangle + i|-Y\rangle)]$

Generate with a 3-pulse scheme:

- [Pulse-1] Produce a mod 2 cat state (say, $|Z\rangle + |-Z\rangle$)
- [Pulse-2] Rotate by $\pi/2$ back to x-axis $\implies [|X\rangle + |-X\rangle]$
- Evolve these antipodal CSSs under \hat{H}_{η} : countertwisted squeezing
- [Pulse-3] Rotate around x-axis (optimized in time/angle) to split and place one of them to the poles and the other to $\pm y$ -axes
- Rotating spin cat state superposed to a fixed counterpart: $[(|Z\rangle + |-Z\rangle) + e^{i\omega_2 t}(|Y\rangle + i|-Y\rangle)]$ Enables a relative phase accumulation
- Crucial in cat codes to protect against bit flips [Ofek et al. Nature **536**, 441 (2016)]

Squeezed and cat states for a quadrupolar nuclear spin

Decoherence on mod 4 Cat States

Squeezed and cat states for a quadrupolar nuclear spin

Decoherence on mod 4 Cat States

 $I = 5/2, \ \eta = 1, \ \gamma = 10^{-4} f_Q$

Squeezed and cat states for a quadrupolar nuclear spin

Decoherence on mod 4 Cat States

 $I = 5/2, \ \eta = 1, \ \gamma = 10^{-2} f_Q$

Squeezed and cat states for a quadrupolar nuclear spin

Scaling of Cat State Decoherence with I

Discussion: Practical Context

- Nuclear spin with $I \ge 1 \implies$ a small-scale quantum info processor Permutation parity: Z. Gedik et al. Sci. Rep. 5, 14671 (2015)
- Quantum memory protection through parity detection w/o leaking out the stored quantum info: N. Ofek et al. Nature **536**, 441 (2016)
- In quantum sensing, surpassing standard quantum limit via cat states

BEC:

• N-atom entanglement \implies spin-N/2 collective Hilbert space

kobit $|1\rangle$ – page 29

Exceedingly more fragile to decoherence as N grows

Quadrupolar Nucleus:

- No entanglement (pure state of a *single* nuclear spin)
- Less fragile to decoherence (*I* is inherently capped)

Squeezed and cat states for a quadrupolar nuclear spin

Conclusions

- Generating stabilized nuclear spin cat states via biaxial QI
- Mod 2 cat states attain fidelities around 0.95
- Robust under variations in the parameters
- Mod 4 cat with one of its constituent mod 2 cats rotating wrt EFG axes
- Utilized in cat codes to protect against bit flips
- Phase-noise-tolerant within currently accessible decoherence levels

Conclusions

- Generating stabilized nuclear spin cat states via biaxial QI
- Mod 2 cat states attain fidelities around 0.95
- Robust under variations in the parameters
- Mod 4 cat with one of its constituent mod 2 cats rotating wrt EFG axes
- Utilized in cat codes to protect against bit flips
- Phase-noise-tolerant within currently accessible decoherence levels

İlginiz için teşekkürler

Thank you for your attention

Squeezed and cat states for a quadrupolar nuclear spin