

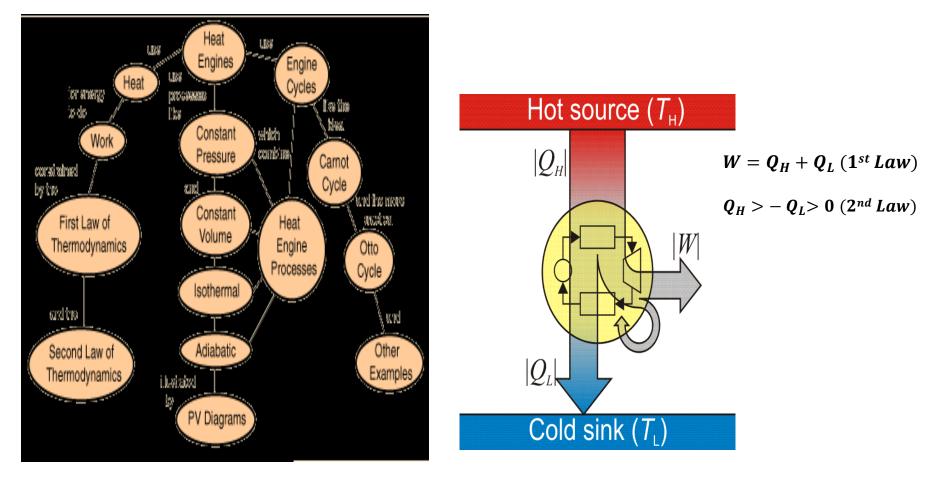
Special Coupled Quantum Heat Engines

Ferdi ALTINTAŞ

References

H.T. Quan, Y.-X Liu, C.P. Sun and F. Nori, Phys. Rev. E **76** (2007) 031105.
 S. Cakmak, D. Turkpence and F. Altintas, Eur. Phys. J. Plus **132** (2017) 554.
 F. Altintas and O.E. Mustecaplioglu, Phys. Rev. E **92** (2015) 022142.

The Concept of Heat Engines



Review of Existing Literature

The introduction of the concept of a QHE - Three-Level Masers as Heat Engines by H. Scovil and E. Schulz-Dubois, Phys. Rev. Lett. 2 (1959) 262.

Quantum systems as working substances:

(i) Two- or Multi-level Systems:	[1] T.U. Kieu, Phys. Rev. Lett. 93 (2004) 140403 [2] H.T. Quan <i>et al.,</i> Phys. Rev. E 72 (2005) 056110
(ii) Harmonic Oscillator Systems:	 [1] B.H. Lin and J.C. Chen, Phys. Rev. E 67 (2003) 046105 [2] Y. Rezek and R. Kosloff, New J. Phys. 8 (2006) 83
(iii) Coupled Spin Systems:	 [1] G. Thomas and R.S. Johal, Phys. Rev. E 83 (2011) 031135 [2] T. Zhang <i>et al.</i>, Phys. Rev. A 75 (2007) 062102
(iv) CQED systems:	[1] M.O. Scully <i>et al.</i> , Science 299 (2003) 862 [2] H.T. Quan <i>et al</i> ., Phys. Rev. E 73 (2006) 036122

Quantum Systems

- Discreteness of states
- Quantum Correlations
- Quantum Coherence etc.

Exotic features

- □ Surpass the efficiency of a classical Carnot Engine.
- Surpass the maximum limit of the work done by a classical Heat Engine.
- □ Work extraction from a single heat bath via vanishing quantum coherence.

Quantum 1st Law of Thermodynamics

- The Hamiltonian of a quantum working substance
- $H = \sum_{n} E_n |n\rangle \langle n|$

Eigen-energy Eigen-state

- Internal energy
 - $U = \langle H \rangle = \sum_{n} P_n E_n$

Occupation probabilities

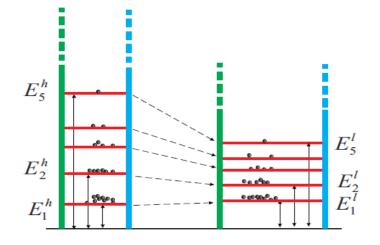
The infinitesimal change

$$dU = \sum_{n} (E_n dP_n + P_n dE_n) = \mathbf{d}Q + \mathbf{d}W$$

$$\rightarrow dQ = \sum_n E_n dP_n$$

(The heat exchanged corresponds to the change in occupation probabilities.)

- $\rightarrow dW = \sum_n P_n dE_n$
- (The work performed corresponds to the change in the energy eigenstates E_n .)
- dQ = TdS is applicable only to the thermal equilibrium case, while $dQ = \sum_n E_n dP_n$ is general for quantum mechanical systems.



Effective Temperature

What is the temperature operator \hat{T} in QM?

Boltzmann distribution $P_n = \frac{1}{Z} e^{-E_n/k_BT}$

$$\frac{P_n}{P_m} = \frac{e^{-E_n/k_BT}}{e^{-E_m/k_BT}} \longrightarrow k_BT = \frac{E_n - E_m}{\ln P_n - \ln P_m}$$

Thermodynamical processes

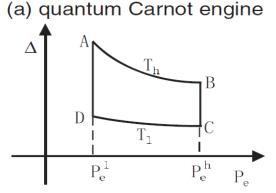
QUANTUM THERMODYNAMIC CYCLES AND QUANTUM HEAT ...

PHYSICAL REVIEW E 76, 031105 (2007)

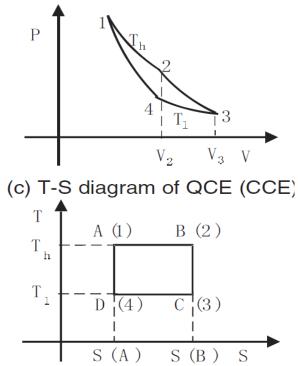
TABLE I. Quantum vs classical thermodynamic processes. Here we use "INV" to indicate the invariance of a thermodynamic quantity and "VAR" to indicate that it varies or changes. U is the internal energy of the working substance; T, P, E_n , P_n are defined in Sec. II. The working substance of the classical thermodynamic processes considered here is the ideal classical gas.

	Isothermal process	Isochoric process	Adiabatic process
	Heat absorbed or released	Heat absorbed or released	No heat exchange
Classical	Work done	No work done	Work done
	INV: U, T VAR: P, V	INV: V VAR: P,T	VAR: P, T, V
Quantum	Heat absorbed or released	Heat absorbed or released	No heat exchange
	Work done	No work done	Work done
	INV: T VAR: U, E_n, P_n	INV: E_n VAR: P_n, T_{eff}	INV: P_n VAR: E_n , T_{eff}

Quantum Carnot Engine (QCE) Cycle



(b) classical Carnot engine



 $A \rightarrow B (C \rightarrow D)$: quantum **isothermal** processes

 $B \rightarrow C \ (D \rightarrow A)$: quantum adiabatic processes

Thermodynamical reversibility of the QCE cycle:

- At point A and point C, the working substance is an effective temperature T(A)=T_h and T (C)=T_I
- $\succ \quad \mathsf{E}_{n}(\mathsf{B})-\mathsf{E}_{m}(\mathsf{B})=\alpha(\mathsf{E}_{n}(\mathsf{C})-\mathsf{E}_{m}(\mathsf{C}))$ $\mathsf{E}_{n}(\mathsf{A})-\mathsf{E}_{m}(\mathsf{A})=\alpha(\mathsf{E}_{n}(\mathsf{D})-\mathsf{E}_{m}(\mathsf{D})),$ $\alpha = \frac{T_{h}}{T_{l}}$

(All energy gaps are changed by the **same ratios** in the two quantum adiabatic processes.)

$$Q_{in}^{A \to B} = T_h(S(B) - S(A))$$

$$Q_{out}^{C \to D} = T_l(S(D) - S(C))$$

$$S = -k_B \sum_n P_n ln P_n$$
(Thermodynamical entropy)
(Thermodynamical entropy)
$$S(A) = S(D)$$

1st Law:
$$\Delta U = 0 \rightarrow W_{\mathcal{C}} = Q_{in}^{A \rightarrow B} + Q_{out}^{C \rightarrow D} = (T_h - T_l)(S(B) - S(A)),$$

 $S(A) = S(D)$
 $s(B) = S(C)$

 $\eta = \frac{W_C}{q_{in}^{A \to B}} = 1 - \frac{T_l}{T_h}$ Classical results $PWC(W_C > 0) T_h > T_l$

6

Quantum Otto Engine (QOE) Cycle

- > $A \rightarrow B (C \rightarrow D)$ quantum **isochoric** process
- \blacktriangleright B \rightarrow C (D \rightarrow A) quantum **adiabatic** process

 $\succ Q_{in}^{QIC} = \sum_n E_n^h (P_n(B) - P_n(A))$

$$\succ Q_{out}^{QIC} = \sum_n E_n^l (P_n(D) - P_n(C))$$

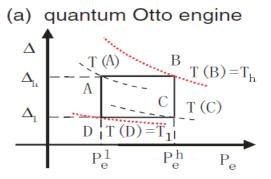
$$W_{O} = Q_{in}^{QIC} + Q_{out}^{QIC} = \sum_{n} (E_{n}^{h} - E_{n}^{l})(P_{n}(B) - P_{n}(A))$$

$$P_{n}(B) = P_{n}(C); P_{n}(A) = P_{n}(D)$$

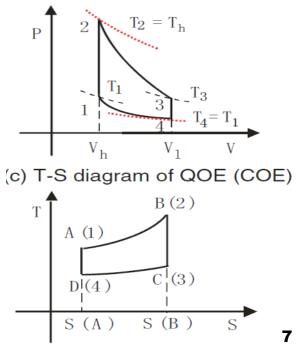
All energy gaps are changed by the same ratios in the quantum adiabatic stages (!!! not necessary !!!).

$$\succ E_n^h - E_m^h = \alpha (E_n^l - E_m^l), \ \alpha \neq \frac{T_h}{T_l}$$
 (Model independent)

>
$$\eta = \frac{W_0}{Q_{in}^{OIC}} = 1 - \frac{1}{\alpha}$$
 (α is an important parameter



(b) classical Otto engine



Quantum versus Classical Otto Engines

Claim: The thermal efficiencies of a QOE and its classical counterpart (ideal gas) are equivalent.

Prove: <u>QOE Cycle</u>

$$E_n^h - E_m^h = \alpha (E_n^l - E_m^l)$$
; quantum adiabatic theorem

$$T(C) = \frac{T_h}{\alpha}, T(A) = T_l \alpha$$

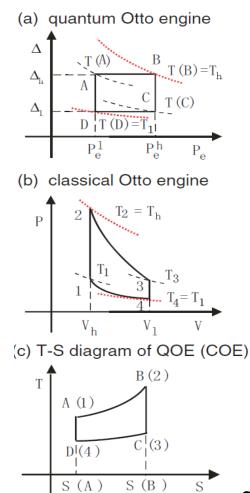
$$\eta = \mathbf{1} - \frac{\mathbf{1}}{\alpha} = \mathbf{1} - \frac{T(C)}{T(B)} = \mathbf{1} - \frac{T(D)}{T(A)}$$

COE Cycle

$$\eta^{CL} = 1 - (\frac{V_h}{V_l})^{\gamma - 1}$$

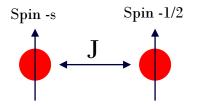
 $TV^{\gamma - 1} = \text{constant in a classical adiabatic process}$

$$\eta^{CL} = 1 - \frac{T_3}{T_2} = 1 - \frac{T_4}{T_1} \qquad \Rightarrow \eta = \eta^{CL}$$



Special Coupled QOE and QCE Cycles

Working substance



 $H = \omega \left(S_Z^A + S_Z^B \right) + J \left(S_X^A S_X^B + S_y^A S_y^B + S_Z^A S_Z^B \right)$ $S_\alpha^A = S_\alpha \otimes \mathbf{1}_2$ $S_\alpha^B = \mathbf{1}_{(2s+1)} \otimes S_\alpha$ $\left[S_\alpha, S_\beta \right] = \mathbf{1} \mathcal{E}_{\alpha\beta\gamma} S_\gamma$ $\omega \quad : \text{Bohr frequencies}$ J(> 0): Anti-ferromagnetic coupling strength

Quantum Otto Engine Cycle

Adiabatic changes: simultaneous change in ω and J (ω_h → ω_l → ω_h) and (J_h → J_l → J_h)

> $\frac{J_h}{\omega_h} = \frac{J_l}{\omega_l} = r;$ r=0 uncoupled case r>0 coupled case

Relative coupling strength

• For any spin-s,
$$E_n^h - E_m^h = \alpha (E_n^l - E_m^l)$$

$$\alpha = \frac{\omega_h}{\omega_l}$$

•
$$\eta = \mathbf{1} - \frac{\omega_l}{\omega_h}$$

• PWC,
$$T_h > \frac{\omega_h}{\omega_l} T_l$$

Same as a qubit as a working subtance

The role of spin-s and the quantum interactions on the relative work output.

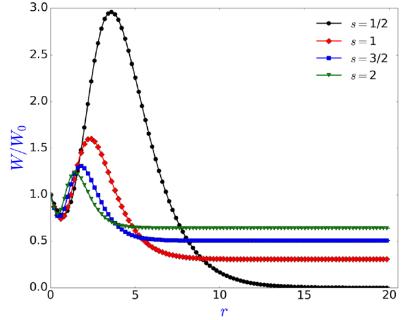


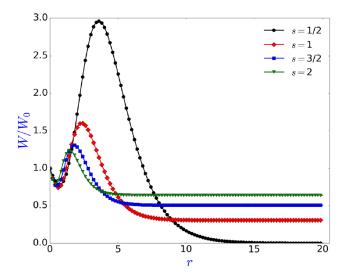
Fig. 1. (Otto Cycle) The work obtained from the special coupled heat engine, *W*, divided by the corresponding work from the uncoupled (r = 0) one, W_0 , as a function of the relative coupling strength *r* for the ratios $T_h/T_l = 2.0$, $\omega_h/\omega_l = 1.5$ and the spin-s values, s = 1/2, 1, 3/2, 2. The thermal efficiency and the Carnot limit are given $\eta = 1/3$ and $\eta_c = 0.5$, respectively.

- The thermodynamics at deep strong coupling regime, i.e. $J \rightarrow \infty$
- Analyses: Thermodynamical quantities are invariant under uniform energy shifts $H = \sum_{n} (E_n + \delta) |n\rangle \langle n|$ Adding δ to all energy levels is irrelevant.

Therefore, when $J \rightarrow \infty$, (s, $\frac{1}{2}$) model system can be mapped into a multilevel system with energy spectrum:

$$\{0, \omega, 2\omega, \dots, (2s-1)\omega\}$$

where $\eta = 0$ for s = 1/2, while $\eta = 1 - \frac{\omega_l}{\omega_h}$ for s > 1/2.



The role of spin-s on the maximum relative work output

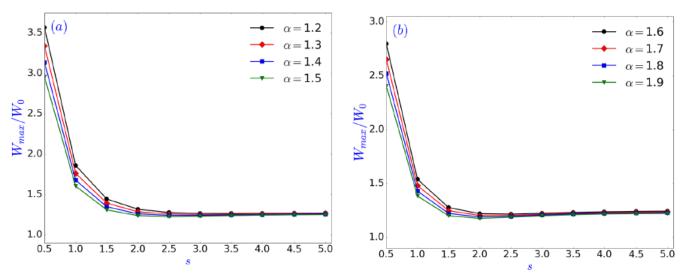


Fig. 2. (Otto Cyle) The maximum work obtained from the special coupled heat engine, W_{max} , divided by the work obtained from the uncoupled (r = 0) one, W_0 , as a function of the value of the spin-*s* for the ratio $T_h/T_l = 2.0$, and for different $\alpha = \frac{\omega_h}{\omega_l}$ values. Note that the thermal efficiency depends only on α ($\eta = 1 - 1/\alpha$) and the Carnot limit is $\eta_c = 0.5$.

Results:

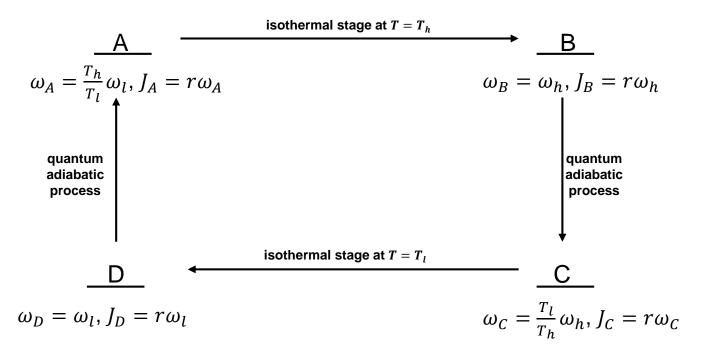
>
$$\frac{W_{max}}{W_0} > 1 \rightarrow$$
 quantum coupling enhanced work output

> $\frac{W_{max}}{W_0}$ decreases monotonically when s increases.

> As
$$\alpha$$
 increases, $\eta = 1 - \frac{1}{\alpha}$ increases while $\frac{W_{max}}{W_0}$ decreases. 12

Special Coupled Quantum Carnot Engine

(s, ¹/₂) Heisenberg XXX system as a working substance



Thermodynamically reversible

$$E_{n}(A) - E_{m}(A) = \frac{T_{h}}{T_{l}}(E_{n}(D) - E_{m}(D))$$

$$E_{n}(B) - E_{m}(B) = \frac{T_{h}}{T_{l}}(E_{n}(C) - E_{m}(C))$$

13

•
$$\eta_{C} = 1 - \frac{T_{l}}{T_{h}}$$

• PWC(W > 0) $T_{h} > T_{l}$ Classical results'

The role of spin-s and quantum interaction on the relative work output.

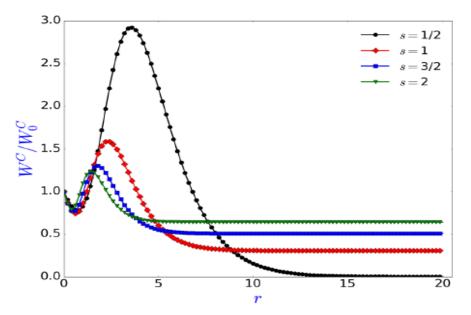


Fig. 3. (Carnot Cycle) The work obtained from the special coupled QCE cycle, W_c , divided by the corresponding work from the uncoupled (r = 0) one, W_0^c , as a function of the relative coupling strength *r* for the ratios $T_h/T_l=2.0$, $\omega_h/\omega_l=1.5$ and the spin-*s* values, s = 1/2, 1, 3/2, 2. The classical Carnot efficiency is $\eta_c = 0.5$.

Active research interest for QHEs

1. Role of quantum properties in the working substance (quantum coherence, interactions and entanglement) on the work output and thermal efficiency.

[1] Phys. Rev. E **90**, 032102 (2014)[2] Phys. Rev. E **83**, 031135 (2011).

2. Local thermodynamics and its relation with the global one; work output is not an extensive quantity.

[1] Phys. Rev. E 83, 031135 (2011).

[2] Phys. Rev. E 92, 022142 (2015).

3. Use of quantum heat baths (entangled or quantum coherent or squeezed or non-Markovian); classical Carnot efficiency is not the upper bound.

[1] EPL **88**, 50003 (2009).

[2] Science **299**, 862 (2003).

4. Role of the time-dependent changes in adiabatic branches; source of non-adiabatic dissipation; inner friction (a fully quantum mechanical phenomena)

[1] Eur. Phys. J. D **71**, 75 (2017).

[2] New J. Phys. **17**, 075007 (2015).

Thank you

Any correspondence: ferdialtintas@ibu.edu.tr