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The Concept of Heat Engines

2

𝑾 = 𝑸𝑯 +𝑸𝑳 (𝟏
𝒔𝒕 𝑳𝒂𝒘)

𝑸𝑯 > − 𝑸𝑳> 𝟎 (𝟐𝒏𝒅 𝑳𝒂𝒘)
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 Discreteness of states

 Quantum Correlations

 Quantum Coherence etc.

Exotic features

 Surpass the efficiency of a classical Carnot Engine.

 Surpass the maximum limit of the work done by a classical Heat Engine.

 Work extraction from a single heat bath via vanishing quantum coherence.

Quantum Systems
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Quantum 1st Law of Thermodynamics

 The Hamiltonian of a quantum working substance

 𝐻 = σ𝑛𝐸𝑛| ۧ𝑛 |𝑛ۦ

 Internal energy

𝑈 = 𝐻 = σ𝑛𝑃𝑛 𝐸𝑛

 The infinitesimal change 

𝑑𝑈 = σ𝑛(𝐸𝑛𝑑𝑃𝑛 + 𝑃𝑛𝑑𝐸𝑛) = đ𝑄 + đ𝑊

đ𝑄 = σ𝑛𝐸𝑛 𝑑𝑃𝑛 (The heat exchanged corresponds to the change in 

occupation probabilities.)

đ𝑊 = σ𝑛𝑃𝑛 𝑑𝐸𝑛 (The work performed corresponds to the change in the energy 

eigenstates En.)

! đ𝑄 = 𝑇dS is applicable only to the thermal equilibrium case, 

while đ𝑄 = σ𝑛𝐸𝑛 𝑑𝑃𝑛 is general for quantum mechanical systems.
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Eigen-energy Eigen-state

Occupation probabilities



Effective Temperature
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What is the temperature operator T in QM?

Boltzmann distribution 𝑃𝑛 =
1

𝑍
𝑒−𝐸𝑛/𝑘𝐵𝑇

𝑃𝑛

𝑃𝑚
=

𝑒−𝐸𝑛/𝑘𝐵𝑇

𝑒−𝐸𝑚/𝑘𝐵𝑇
𝑘𝐵𝑇 =

𝐸𝑛−𝐸𝑚

𝑙𝑛𝑃𝑛−𝑙𝑛𝑃𝑚

Thermodynamical processes



Quantum Carnot Engine (QCE) Cycle
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A → B (C → D) : quantum isothermal processes

B → C (D → A) : quantum adiabatic processes

Thermodynamical reversibility of the QCE cycle:

➢ At point A and point C, the working substance is an effective temperature

T(A)=Th and T (C)=Tl

➢ En(B)-Em(B)=α(En(C)-Em(C))

En(A)-Em(A)=α(En(D)-Em(D)),

(All energy gaps are changed by the same ratios in the two quantum adiabatic 

processes.)

𝑄𝑖𝑛
𝐴→𝐵 = 𝑇ℎ(𝑆 𝐵 − 𝑆 𝐴 )

𝑄𝑜𝑢𝑡
𝐶→𝐷 = 𝑇𝑙(𝑆 𝐷 − 𝑆 𝐶 )

1st Law: ∆𝐔 = 𝟎 →𝑾𝑪 = 𝐐𝐢𝐧
𝐀→𝐁+𝐐𝐨𝐮𝐭

𝐂→𝐃 = 𝑻𝒉 − 𝑻𝒍 𝑺 𝑩 − 𝑺 𝑨 ,

➢ η =
𝑾𝑪

𝑸𝒊𝒏
𝑨→𝑩 = 𝟏 −

𝑻𝒍

𝑻𝒉

➢ 𝑃𝑊𝐶(𝑾𝑪 > 0) 𝑇ℎ > 𝑇𝑙

𝑆 = −𝑘𝐵
𝑛
𝑃𝑛𝑙𝑛𝑃𝑛

(Thermodynamical entropy)

𝑠 𝐴 = 𝑆 𝐷
𝑠 𝐵 = 𝑆 𝐶

Classical results

𝜶 =
𝑻𝒉
𝑻𝒍



Quantum Otto Engine (QOE) Cycle
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➢ A→B (C→D) quantum isochoric process

➢ B→C (D→A) quantum adiabatic process

➢ 𝑄𝑖𝑛
𝑄𝐼𝐶

= σ𝑛𝐸𝑛
ℎ(𝑃𝑛 𝐵 − 𝑃𝑛 𝐴 )

➢ 𝑄𝑜𝑢𝑡
𝑄𝐼𝐶

= σ𝑛𝐸𝑛
𝑙 (𝑃𝑛 𝐷 − 𝑃𝑛 𝐶 )

➢ 𝑊𝑂 = 𝑄𝑖𝑛
𝑄𝐼𝐶

+ 𝑄𝑜𝑢𝑡
𝑄𝐼𝐶

= σ𝑛(𝐸𝑛
ℎ − 𝐸𝑛

𝑙 )(𝑃𝑛 𝐵 − 𝑃𝑛 𝐴 )

𝑃𝑛 𝐵 = 𝑃𝑛 𝐶 ; 𝑃𝑛 𝐴 = 𝑃𝑛 𝐷

➢ All energy gaps are changed by the same ratios in 

the quantum adiabatic stages (!!! not necessary !!!).

➢ 𝐸𝑛
ℎ − 𝐸𝑚

ℎ = 𝛼(𝐸𝑛
𝑙 − 𝐸𝑚

𝑙 ), 𝛼 ≠
𝑇ℎ

𝑇𝑙
(Model independent)

➢ 𝜼 =
𝑾𝑶

𝑸𝒊𝒏
𝑶𝑰𝑪 = 𝟏 −

𝟏

𝜶
(α is an important parameter)

➢ 𝑃𝑊𝐶 𝑊𝑂 > 0 𝑇ℎ > 𝛼 𝑇𝑙



Quantum versus Classical Otto Engines
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Claim: The thermal efficiencies of a QOE and its

classical counterpart (ideal gas) are equivalent. 

Prove: QOE Cycle

𝐸𝑛
ℎ − 𝐸𝑚

ℎ = 𝛼(𝐸𝑛
𝑙 − 𝐸𝑚

𝑙 ); quantum adiabatic theorem

𝑇(𝐶) =
𝑇ℎ

𝛼
, 𝑇 𝐴 = 𝑇𝑙𝛼

η = 𝟏 −
𝟏

𝜶
= 𝟏 −

𝑻 𝑪

𝑻 𝑩
= 𝟏 −

𝑻 𝑫

𝑻 𝑨

COE Cycle

𝜂𝐶𝐿 = 1 − (
𝑉ℎ

𝑉𝑙
)𝛾−1

𝑇𝑉𝛾−1 = constant in a classical adiabatic process

𝜂𝐶𝐿 = 1 −
𝑇3

𝑇2
= 1 −

𝑇4

𝑇1
⇒ η = 𝜂𝐶𝐿



Special Coupled QOE and QCE Cycles

Working substance 
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J

Spin -s Spin -1/2

𝐻 = 𝜔 𝑆𝑍
𝐴 + 𝑆𝑍

𝐵 + 𝐽(𝑆𝑥
𝐴𝑆𝑥

𝐵+𝑆𝑦
𝐴𝑆𝑦

𝐵 +𝑆𝑍
𝐴 𝑆𝑍

𝐵)

𝑆𝛼
𝐴 = 𝑆𝛼 ⊗𝟏2

𝑆𝛼
𝐵 = 𝟏(2𝑠+1)⊗𝑆𝛼

𝑆𝛼 , 𝑆𝛽 = 𝕚εαβγ𝑆𝛾

𝜔 : Bohr frequencies

𝐽(> 0): Anti-ferromagnetic coupling strength

Quantum Otto Engine Cycle

➢ Adiabatic changes: simultaneous change in 𝜔 and 𝐽
(ωh → ωl → ωh) and (Jh → Jl → Jh)

➢
Jh

ωh
=

Jl

ωl
= r;  

r=0 uncoupled case

r>0 coupled case

Relative coupling strength



 For any spin-s, 𝐸𝑛
ℎ − 𝐸𝑚

ℎ = 𝛼(𝐸𝑛
𝑙 − 𝐸𝑚

𝑙 )

𝛼 =
𝜔ℎ

𝜔𝑙

 η = 𝟏 −
𝝎𝒍

𝝎𝒉

 𝑃𝑊𝐶, 𝑇ℎ >
𝜔ℎ

𝜔𝑙
𝑇𝑙

The role of spin-s and the quantum interactions on the relative work output.
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>

Same as a qubit as a working subtance

Fig. 1. (Otto Cycle) The work obtained from

the special coupled heat engine, W, divided by

the corresponding work from the uncoupled

(𝑟 = 0) one, 𝑊0, as a function of the relative

coupling strength 𝑟 for the ratios Τ𝑇ℎ 𝑇𝑙 = 2.0,
Τ𝜔ℎ 𝜔𝑙 = 1.5 and the spin-s values, 𝑠 =

1/2, 1, 3/2, 2 . The thermal efficiency and the

Carnot limit are given 𝜂 = 1/3 and 𝜂𝑐 = 0.5,

respectively.



 The thermodynamics at deep strong coupling

regime, i.e. 𝐉 → ∞

 Analyses: Thermodynamical quantities are

invariant under uniform energy shifts

𝐻 =
𝑛
(𝐸𝑛 + 𝛿) ۧ𝑛 𝑛ۦ

Therefore, when J → ∞, (s, ½) model system can

be mapped into a multilevel system with energy

spectrum:

{0, ω, 2ω,… , (2s − 1)ω}

where η = 0 for s = 1/2, while η = 1 −
ωl

ωh
for

s > 1/2.
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Adding 𝛿 to all energy

levels is irrelevant. 



Results:

➢

𝑊𝑚𝑎𝑥

𝑊0
> 1 → quantum coupling enhanced work output.

➢

𝑊𝑚𝑎𝑥

𝑊0
decreases monotonically when s increases.

➢ As α increases, η = 1 −
1

α
increases while 

𝑊𝑚𝑎𝑥

𝑊0
decreases. 12

Fig. 2. (Otto Cyle) The maximum work obtained from the special coupled heat engine, 𝑊𝑚𝑎𝑥, divided

by the work obtained from the uncoupled (𝑟 = 0) one, 𝑊0, as a function of the value of the spin-s for

the ratio Τ𝑇ℎ 𝑇𝑙 = 2.0, and for different 𝛼 =
𝜔ℎ

𝜔𝑙
values. Note that the thermal efficiency depends only on

α (𝜂 = 1 − 1/𝛼) and the Carnot limit is 𝜂𝐶 = 0.5.

The role of spin-s on the maximum relative work output



Special Coupled Quantum Carnot Engine

 (s, ½) Heisenberg XXX system as a working substance
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A    B

CD

𝜔𝐴 =
𝑇ℎ

𝑇𝑙
𝜔𝑙, 𝐽𝐴 = 𝑟𝜔𝐴 𝜔𝐵 = 𝜔ℎ, 𝐽𝐵 = 𝑟𝜔ℎ

𝜔𝐶 =
𝑇𝑙

𝑇ℎ
𝜔ℎ, 𝐽𝐶 = 𝑟𝜔𝐶𝜔𝐷 = 𝜔𝑙, 𝐽𝐷 = 𝑟𝜔𝑙

isothermal stage at 𝑻 = 𝑻𝒉

isothermal stage at 𝑻 = 𝑻𝒍

quantum

adiabatic

process

quantum

adiabatic

process

▪ Thermodynamically reversible 

En A − Em A =
Th
Tl
(En D − Em D )

En B − Em B =
Th
Tl
(En C − Em C )



 ηC = 1 −
Tl

Th

 PWC(W > 0) Th > Tl

The role of spin-s and quantum interaction on the relative work output.
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‘Classical results’

Fig. 3. (Carnot Cycle) The work obtained from the special coupled QCE cycle, 𝑊𝐶 , divided by the

corresponding work from the uncoupled (𝑟 = 0) one, 𝑊0
𝐶 , as a function of the relative coupling strength r for

the ratios Τ𝑇ℎ 𝑇𝑙=2.0, 𝜔ℎ/𝜔𝑙 = 1.5 and the spin-s values, 𝑠 = 1/2, 1, 3/2, 2. The classical Carnot efficiency is 𝜂𝐶 =
0.5.



Active research interest for QHEs

1. Role of quantum properties in the working substance (quantum coherence, 

interactions and entanglement) on the work output and thermal efficiency.

[1] Phys. Rev. E 90, 032102 (2014)

[2] Phys. Rev. E 83, 031135 (2011).
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2. Local thermodynamics and its relation with the global one; work output is not an

extensive quantity.

[1] Phys. Rev. E 83, 031135 (2011).

[2] Phys. Rev. E 92, 022142 (2015).

3. Use of quantum heat baths (entangled or quantum coherent or squeezed or non-

Markovian); classical Carnot efficiency is not the upper bound.

[1] EPL 88, 50003 (2009).

[2] Science 299, 862 (2003).

4. Role of the time-dependent changes in adiabatic branches; source of non-adiabatic

dissipation; inner friction (a fully quantum mechanical phenomena)

[1] Eur. Phys. J. D 71, 75 (2017).

[2] New J. Phys. 17, 075007 (2015).
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